[size=34]Polígonos são regiões limitadas por segmentos de reta. O encontro dos segmentos de reta formam os vértices e os ângulos da figura. O polígono mais simples é o triângulo, que possui três lados, três vértices e três ângulos. [/size]
[size=34]Veja a tabela com os dados de alguns polígonos regulares. [/size]
[size=34]Veja a tabela com os dados de alguns polígonos regulares. [/size]
Lados | Ângulos | Vértices | Figura | |
Triângulo | 3 | 3 | 3 | |
Quadriátero | 4 | 4 | 4 | |
Pentágono | 5 | 5 | 5 | |
Hexágono | 6 | 6 | 6 | |
Heptágono | 7 | 7 | 7 |
[size=34]A soma dos ângulos internos de um polígono é dada pela expressão:
S = (n – 2 )*180º, onde n = número de lados.
Para calcular o valor de cada ângulo é preciso dividir a soma dos ângulos internos pelo número de lados do polígono.
Exemplo 1
Qual é a soma dos ângulos internos de um heptágono regular?
O heptágono possui 7 lados.
S = (n – 2) * 180º
S = (7 – 2) * 180º
S = 5 * 180º
S = 900º
A soma dos ângulos internos de um heptágono é 900º.
Exemplo 2
Qual a soma dos ângulos internos de um icoságono (20 lados)?
Aplicando a fórmula:
S = (n – 2) * 180º
S = (20 – 2) * 180º
S = 18 * 180º
S = 3240º
A soma dos ângulos internos de um icoságono é 3240º.
Podemos utilizar a fórmula da soma dos ângulos internos para calcular o número de lados de qualquer polígono, desde que a soma dos ângulos internos seja dada.
Exemplo 3
Quantos lados possui um polígono cuja soma dos ângulos internos é igual a 2340º?
S = (n – 2) * 180º
2340º = (n – 2) * 180º
2340º = 180n – 360º
2340 + 360 = 180n
2700 = 180n
180n = 2700
n = 2700/180
n = 15
O polígono possui 15 lados.
A soma dos ângulos externos de qualquer polígono regular é 360º.
Para calcular a medida do ângulo externo de um polígono é preciso dividir 360º pelo número de lados da figura poligonal.
Exemplo 4
Quanto mede o ângulo externo do hexágono?
O hexágono possui seis lados, então:
ai = 360º / 6
ai = 60º
Cada ângulo externo de um hexágono mede 60º. [/size]
S = (n – 2 )*180º, onde n = número de lados.
Para calcular o valor de cada ângulo é preciso dividir a soma dos ângulos internos pelo número de lados do polígono.
Exemplo 1
Qual é a soma dos ângulos internos de um heptágono regular?
O heptágono possui 7 lados.
S = (n – 2) * 180º
S = (7 – 2) * 180º
S = 5 * 180º
S = 900º
A soma dos ângulos internos de um heptágono é 900º.
Exemplo 2
Qual a soma dos ângulos internos de um icoságono (20 lados)?
Aplicando a fórmula:
S = (n – 2) * 180º
S = (20 – 2) * 180º
S = 18 * 180º
S = 3240º
A soma dos ângulos internos de um icoságono é 3240º.
Podemos utilizar a fórmula da soma dos ângulos internos para calcular o número de lados de qualquer polígono, desde que a soma dos ângulos internos seja dada.
Exemplo 3
Quantos lados possui um polígono cuja soma dos ângulos internos é igual a 2340º?
S = (n – 2) * 180º
2340º = (n – 2) * 180º
2340º = 180n – 360º
2340 + 360 = 180n
2700 = 180n
180n = 2700
n = 2700/180
n = 15
O polígono possui 15 lados.
A soma dos ângulos externos de qualquer polígono regular é 360º.
Para calcular a medida do ângulo externo de um polígono é preciso dividir 360º pelo número de lados da figura poligonal.
Exemplo 4
Quanto mede o ângulo externo do hexágono?
O hexágono possui seis lados, então:
ai = 360º / 6
ai = 60º
Cada ângulo externo de um hexágono mede 60º. [/size]